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In this paper, accurate and efficient calculations of the flow inside different 
types of cavities are presented. The incompressible Navier-Stokes equations 
are expressed in generalized curvilinear coordinates using artificial 
compressibility method. The governing equation in conservative form is 
solved numerically using an upwind compact finite difference scheme. The 
solution algorithm for solving the resulting linear system of equation is 
approximate factorization based ADI scheme. The computed results are 
compared with the results in the literature and the agreement is good. Also 
the presence of multiple solution and critical value of aspect ratio and 
Reynolds number for two sided cavity calculated and compared. 
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1. Introduction 

*The problem of steady incompressible viscous 
flow within different cavities is of primary 
importance in fluid dynamics. The development of 
improved methods for solving the classical lid driven 
cavity problem has been an attractive research 
problem in computational fluid dynamics for many 
years. Being simple in geometry, the lid driven cavity 
contains a variety of interesting phenomena in it. 
Classical lid driven cavity problem was then 
extended to deep one sided cavity problem by Cortes 
and Miller (1994) who studied the effect of Reynolds 
number up to 10,000. Patil et al. (2006) have 
investigated the effect of Reynolds number for deep 
cavity with one sided wall motion, having aspect 
ratio 2 and 4. They also gave the effect of aspect ratio 
on secondary vortex formation. Latter, Omari (2013) 
have studied the effect of Reynolds number as well 
as aspect ratio. Perumal and Dass (2013) and 
Perumal (2012) have predicted that lid driven cavity 
with different aspect ratios can exhibit all 
phenomena of incompressible flows. The presence of 
primary and secondary eddies, flow with different 
aspect ratios, exploiting different boundary 
conditions have made the lid driven cavity flows as 
an attractive choice for the comparison of the 
numerical schemes. Kuhlmann et al. (1997) have 
studied the flow inside two sided cavity. They 
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investigated the asymmetric solution inside two 
sided channel with facing walls. Arun and Satheesh 
(2015) studied the flow inside deep parallel and 
antiparallel cavity with aspect ratio 1, 2 and 4. The 
two sided cavity flow phenomena in square and 
rectangular cavities have further studied by Perumal 
and Dass (2010). They investigated the flow inside 
deep, two sided lid driven cavity with aspect ratio 2 
and 5 while Prasad and Dass (2016) studied the flow 
inside two sided deep cavity and phenomena of flow 
bifurcation was introduced for various kinds of two 
sided square cavities. Along with the benchmark 
results, two sided cavity have many industrial 
applications as well. Perumal et al. (2014) described 
many industrial applications of two sided in lid 
driven cavity in the field of manufacturing of 
processes. Non-linear phenomena of flow inside 
cavity exhibit multiple steady solutions at high 
Reynolds number. Wahba (2009) have proposed the 
multiple solutions for a single Reynolds number with 
non-facing cavity. Luo and Yang (2007) studied 
multiple solution phenomena for two sided facing 
cavity with parallel wall motion, anti-parallel wall 
motion and non-facing wall motion. They calculated 
the critical and threshold values for a single 
Reynolds number and aspect ratio for which 
asymmetric solution is obtained. 

The objectives of the present work are the 
following: i) implementation of an implicit high-
order upwind compact scheme in curvilinear 
coordinates for simulations of rectangular 2D 
cavities, specifically for deep-cavities whose aspect 
ratio >  1, shallow cavity with aspect ratio < 1, 
cavity with two sided wall motion and deep cavity 
skewed at various angles; ii) to interpret the results 
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with particular focus on the structure of the primary- 
and corner-eddies; iii) to investigate the critical 
value of aspect ratio and Reynolds number; and iv) 
to study the critical value for non-facing two sided 
cavity. 

The rest of the paper is organized as follows. 
Section 2 describes the numerical procedure, Section 
3 discusses the numerical examples and Section 4 
concludes this paper.  

2. Governing equations and numerical 
discretization 

The governing equations are the two-dimensional 
incompressible Navier-Stokes equations, which are 
written in conservative form in generalized 
curvilinear coordinates 𝜉 and 𝜂 using artificial 
compressibility method; 

 
𝜕𝑄̂

𝜕𝜏
+

𝜕𝐸̂

𝜕𝜉
+

𝜕𝐹̂

𝜕𝜂
−

1

𝑅𝑒
(

𝜕𝐸𝑣̂

𝜕𝜉
+

𝜕𝐹𝑣̂

𝜕𝜂
) = 0,                                           (1) 

 

where 𝜏 is pseudo-time or iteration parameter due to 
the artificial compressibility formulation Chorin 
(1997), 𝑄̂ is the solution vector in the transformed 
plane, while the vectors 𝐸̂, 𝐹̂ are viscous fluxes and 𝐸𝑣̂ 
and 𝐹𝑣̂ are inviscid fluxes respectively i.e., 
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1

𝐽
(𝑝, 𝑢, 𝑣)𝑡 ,  
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1

𝐽
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1
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(𝛽𝑣, 𝑢𝑣 + 𝜂𝑥𝑃, 𝑣𝑉 + 𝜂𝑦𝑃)𝑡 , and 

 

𝐸𝑣̂ =
1

𝐽
(𝜉𝑥 𝐸𝑣 + 𝜉𝑦 𝐹𝑣)𝑡, 𝐹𝑣̂ =

1

𝐽
(𝜂𝑥  𝐸𝑣 + 𝜂𝑦 𝐹𝑣)𝑡,  

 

𝛽 is the artificial compressibility parameter that 
controls convergence of the method, 𝑅𝑒 is the 
Reynolds number and 𝐽 is the Jacobean of 
transformation, 𝑈 and 𝑉 are the contra-variant 
velocity components and 𝜉𝑥 and 𝜂𝑥 are the metrics. 

In artificial compressibility method, adding a 
pseudo-time derivative of pressure to the continuity 
equation circumvents the difficulty of the pressure 
decoupling in the incompressible Navier-Stokes 
equations. The resulting system of equations is 

iterated in pseudo-time until the mass conservation 
constraint is satisfied. The method leads to 
hyperbolic and hyperbolic-parabolic equations for 
inviscid and viscous incompressible flows, 
respectively. Therefore, numerical schemes 
developments for compressible flows can be easily 
transferred to incompressible flows. The aim of the 
present work is to use an implicit backward finite 
difference scheme for discretization of pseudo-time 
derivative, third-order upwind compact scheme for 
convective terms and fourth-order central compact 
scheme for the viscous terms. The metric terms are 
discretized with six-order central finite difference 
scheme. The discretized equations are solved using 
Beam-Warming approximate factorization based 
alternate direction implicit (ADI) scheme as detailed 
in (Shah et al., 2009; 2012).  

3. Results and discussions 

In this section, we investigate the viscous flow in 
some cavities like non-facing cavity, flow in a deep 
and shallow cavity, flow inside a two-sided cavity 
and flow in a two-sided skewed cavity. The physical 
domain in 𝑥𝑦− plane is transformed into the 
computational domain (𝜉, 𝜂)  by the following 
coordinate transformation (Nayak et al., 2015). 

 
𝜉 = 𝑥 − 𝑦 cot 𝛼                       (2) 
𝜂 = 𝑦 sin 𝛼⁄                       (3) 

3.1. Flow in a deep-cavity 

To study the flow phenomena inside the deep-
cavity with different aspect ratio, we keep the 
skewed angle 𝛼 = 90° in formulae (2) and (3). The 
top lid moving with constant speed, while all other 
walls are stationary. The grid size is 101 per unit 
length while the aspect ratio is 1.5, 2, 3 and 4. In Fig. 
1, the comparison of computed results for 
normalized "u" versus "y" with the results of Cortes 
and Miller (1994) and Omari (2013) are presented 
for cavities having aspect ratio of 3 and 1.5 
respectively.  

 

  
Fig. 1: Comparison of normalized u versus y for Re= 100 and Re= 1000, (left) aspect ratio= 1.5 (right) aspect ratio= 3.0 

 

To further verify our method, the deep-cavities 
with aspect ratios of 1.5, 2, 3 and 4, are also studied 

with different Reynolds numbers. It is observed that 
the number of counter rotating vortices are 
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produced under the moving lid depends directly on 
Reynolds number. As Reynolds number increases, 
the center of primary eddy moves in downward 
direction and at higher Reynolds number, the 
number of counter rotating vortices increases that 
depend upon both Reynolds number and aspect 
ratio. For the cavity with aspect ratio 2 or higher, the 
difference between two consecutive eddies is found 
to be 0.73 for Re= 50 and has good agreement with 
the result of Patil et al. (2006).  

For cavity having aspect ratio 2, top primary 
vortex location is 1.58267 and location for secondary 
vortex is 0.84864 so the difference in location for 
two consecutive vortices is 0.73403 for Re= 1000 
which qualitatively agrees with the result of Patil et 

al. (2006). Also for aspect ratio=4.0 top primary 
vortex is located at location 3.61337 and secondary 
vortex lies at the location 2.86029, so the difference 
between consecutive locations is 0.75261. For the 
aspect ratio of 1.5, the flow topology consists of only 
one eddy with two small corners eddies at low 
Reynolds number. When the aspect ratio increases to 
a certain aspect ratio, two corner eddies enlarge and 
merge to form a secondary vortex for the same 
Reynolds number i.e., Re= 50. The critical value for 
merging of two secondary eddies is 1.71 and is 
verified for the present scheme which is shown in 
Fig. 2 which agrees with the result of Patil et al. 
(2006).  

 

 
Fig. 2: Formation of secondary vortex for Re=50 for different aspect ratio i.e., Aspect ratio= 1.5, Aspect ratio=1.70, value 

below critical value, Aspect ratio=1.72, value above critical value formation of one vortex, and Aspect ratio= 1.80 
 

3.2. Flow in a shallow-cavity 

In this case, the aspect ratio is kept less than one 
i.e., length of the cavity is greater than its depth. In 
the first part, the top wall of the cavity is moved with 
unit speed along x-direction. Fig. 3 in left shows the 

comparison plots of v versus x, with the results of 
Omari (2013) while in the Fig. 3 in right shows, the 
comparison of u versus y for cavity having aspect 
ratio 0.50 and Re= 100 and Re=1000 with Perumal 
and Dass (2013). 

 

  
 

Fig. 3: For aspect ratio 0.5 (left) Comparison of v versus x for different Re with Omari (2013), (right) Comparison of u versus 
y for different Re with Perumal and Dass (2013) 

 

The Fig. 4 shows the streamlines for the shallow 
cavity with aspect ratio= 0.5, that shows the 
qualitative comparison of present scheme is good as 

compared with the reference Perumal and Dass 
(2013). 
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Fig. 4: Streamlines for cavity having Aspect ratio 0.5, for Left=present, right= Perumal and Dass (2013) 

 
In the second case of this subsection, the top and 

bottom walls of the cavity are moved. For the 
shallow parallel lid driven two sided cavity, aspect 
ratio plays an important role. We have observed that 
with Re= 600, for the aspect ratio between 0.56 and 

0.91, two solution one symmetric and another 
asymmetric are obtained. However, for aspect ratio 
greater than 0.91, the asymmetric solution ceases off 
which agrees with the results of Prasad and Dass 
(2016) and are shown in Fig. 5.  

 
Fig. 5: Aspect ratio effect for the shallow two sided parallel cavity for Asymmetric solution for aspect ratio =0.80 and 

Symmetric solution for aspect ratio=0.95 

 
3.3. Flow in a two sided deep-cavity 

When we generate a cavity using Eqs. 2 and 3 
with the skewed angle 𝛼 = 90° and moving both top 
and bottom walls, the cavity is termed as two sided 
cavity. An extensive work to investigate flow 
patterns in two sided cavity was done by Perumal 
and Dass (2013, 2010). In Table 1, the "y" location of 
vortices is presented for two sided deep cavity 

parallel and antiparallel cavity. For the parallel 
cavity vortex location is compared with the Arun and 
Satheesh (2015) for Re=100 and for antiparallel 
cavity the vortex location in y direction is presented 
for Re=2000. It is observed in Table 1 that for 
antiparallel two sided cavity with aspect ratio=2.0, 
there are three vortices and for cavity having aspect 
ratio 4.0, there are five vortices. 

 
Table 1: Vertical "y" location of vortices for two sided deep parallel and antiparallel cavity having aspect ratio 2 and 4 

compared with Perumal et al. (2014) 
(a) Parallel cavity Re=100 

Aspect ratio (Ref) I II III IV V 

2.0 (Agarwal) 0.27 1.73 - - - 
(Present) 0.28 1.74 - - - 

4.0 (Agarwal) 0.26 1.60 2.38 3.74 - 
Present 0.26 1.57 2.37 3.72 - 

(b) Anti parallel cavity Re=2000 
2.0 (Agarwal) 0.26 1.00 1.74 - - 

Present 0.25 1.00 1.73 - - 
4.0 (Agarwal) 0.45 1.25 1.99 2.75 3.56 

Present 0.45 1.25 2.00 2.76 3.57 
 

3.4. Flow in a non-facing square cavity 

In this subsection, we focus on the cavity with 
skewed angle of 90° with non-facing (upper and left 
walls). In the left hand side of Fig. 6, the streamlines 
for the square cavity with non-facing wall motion are 
shown for Re=100. The locations of vortices are also 
presented. It is observed that increasing the 
Reynolds number increases the vortex size. In the 
right hand side of Fig. 6, the plot of u versus y is 
given for comparison with the results of Perumal 
and Dass (2010). 

Increasing the Reynolds number increases the 
size of vortices as long as the value of the Reynolds is 

below critical value. It is verified that the critical 
value of Reynolds number for non-facing square 
cavity is 1073, after which the phenomena of 
bifurcation arises. The geometric center of the non-
facing driven cavity is no longer zero and it produces 
multiple solutions at for a fixed Reynolds number. 
For each Reynolds number one symmetric and one 
asymmetric solution are produced. The asymmetric 
solution above the critical value of the Reynolds 
numbers is stable while the symmetric solution is 
unstable which is shown in Fig. 7. The results are 
compared with the results of Wahba (2009) in the 
above part of Fig. 7, while the results with same 
Reynolds number are presented with the below part 
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of Fig. 7. It is observed that the current scheme gives improved results than that of Wahba (2009) results. 
 

  
 

Fig. 6: (left) The geometry with streamlines for non-facing cavity at Re=100 (right) Plot of u versus y for non-facing cavity at 
Re=500, compared with (Perumal and Dass, 2010) 

 
Fig. 7: Presence of asymmetric solution above the critical value for non-facing cavity compared with Wahba (2009) above, 

and present results are given below for Re= 1000, Re=1075 and Re=1500 left to right, respectively 
 

3.5. Flow in a two sided skewed-cavity 

In this section, results for the variation of skew 
angle 𝛼 in Eqs. 2 and 3 are presented. The aspect 
ratio for the cavity is also kept greater than one. The 
cavity is termed as deep skewed-cavity. In the first 
part of this subsection, the flow plots of normalized 
"u" versus "y" are shown in Fig. 8 for different aspect 

ratio. In first part of Fig. 8, the effect of depth for the 
deep two sided anti parallel skewed cavity is 
presented and in the second part of the Fig. 8, the 
plots of "u" versus "y" for parallel skewed driven 
deep cavity is presented. The Fig. 8 shows that flow 
behave similar manner with only difference in depth. 
Here the skew angle is fixed at 45°.  

 

  
 

Fig. 8: For skew angle  45°, plots of u versus y for different aspect ratio (left) For antiparallel deep two sided cavity(right) 
Parallel deep two sided cavity 

 

The streamlines pattern for skew angle 45° and 
60° are presented for both shallow and deep 

skewed-cavities with aspect ratio 0.75 and 1.5. The 
top and bottom walls are moving in parallel 
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direction to each other. The computed results are 
presented in Fig. 9 which shows that asymmetric 
solution is obtained for the cavity with aspect ratio = 
0.70 at Re= 1000. The presence of asymmetric 
solution for shallow-cavity is dependent on aspect 
ratio as well as on Reynolds number. For the two 
sided cavity, the critical value for aspect ratio and 
Reynolds number is same as given in section 3.2.  

In the Fig. 10, the streamlines pattern for 
antiparallel-cavity with aspect ratio 1.5 and 2.0 are 
shown for skew angle 𝛼 = 45° and Re=100 for 
aspect ratio=1.5 and. 

4. Summary 

We have used an implicit high-order scheme for 
solving incompressible Navier-Stokes equations in 

curvilinear coordinates numerically to investigate 
flow in cavities. First the flow inside deep cavity is 
computed and comparison is given with reference 
solution. The effect of aspect ratio for formation of 
secondary vortex and critical value of aspect ratio is 
calculated. Second, the flow in a shallow cavity is 
computed and critical value of aspect ratio for two 
sided shallow cavity is determined. Third, it is 
verified that the formation of secondary vortex 
depends upon the aspect ratio and Reynolds number 
which is shown for the two-sided deep cavity flow. 
Fourth, the critical value of Reynolds number for 
non-facing cavity is determined and existence of 
multiple solutions above the critical value of Re is 
verified. Fifth, the flow behavior for skew cavities 
with different aspect ratios and angles are provided. 

 
Fig. 9: The streamline pattern for two sided deep skewed cavity for parallel wall motion (left) 𝛼 = 60°, Re=1000, aspect 

ratio=0.75 (right) 𝛼 = 45°, aspect ratio=1.5 
 

 
Fig. 10: The streamline pattern for two sided deep skewed cavity for antiparallel wall motion for Re=100, 𝛼 = 45°. (left) 

Aspect ratio=1.5 (right) aspect ratio=2.0 

 
References  

Arun S and Satheesh A (2015). Analysis of flow behaviour in a two 
sided lid driven cavity using lattice boltzmann technique. 
Alexandria Engineering Journal, 54(4): 795-806. 

Chorin AJ (1997). A numerical method for solving incompressible 
viscous flow problems. Journal of Computational Physics, 
135(2): 118-125. 

Cortes AB and Miller JD (1994). Numerical experiments with the 
lid driven cavity flow problem. Computers and Fluids, 23(8): 
1005-1027. 

Kuhlmann HC, Wanschura M, and Rath HJ (1997). Flow in two-
sided lid-driven cavities: non-uniqueness, instabilities, and 
cellular structures. Journal of Fluid Mechanics, 336: 267-299. 

Luo WJ and Yang RJ (2007). Multiple fluid flow and heat transfer 
solutions in a two-sided lid-driven cavity. International 
Journal of Heat and Mass Transfer, 50(11): 2394-2405. 

Nayak RK, Bhattacharyya S, and Pop I (2015). Numerical study on 
mixed convection and entropy generation of Cu–water 

nanofluid in a differentially heated skewed enclosure. 
International Journal of Heat and Mass Transfer, 85: 620-634. 

Omari R (2013). CFD simulations of lid driven cavity flow at 
moderate Reynolds number. European Scientific Journal, 
9(15): 22-35.  

Patil DV, Lakshmisha KN, and Rogg B (2006). Lattice Boltzmann 
simulation of lid-driven flow in deep cavities. Computers and 
Fluids, 35(10): 1116-1125. 

Perumal A and Dass AK (2010). Simulation of Incompressible 
Flows in Two-Sided Lid-Driven Square Cavities (Part I-FDM). 
CFD Letters, 2(1): 13-24. 

Perumal AD, Agarwal L, Raj KT, Harshan A, and Gopal NK (2014). 
Examination of the Lattice boltzmann method in simulation of 
manufactureing. ARPN Journal of Engineering and Applied 
Sciences, 9(4): 471-478. 

Perumal DA (2012). Simulation of flow in Two-Sided Lid-Driven 
deep cavities by finite difference method. Journal of Applied 
Science in the Thermodynamics and Fluid Mechanics, 6(1): 1-
6. 



Hassan Fayyaz, Abdullah Shah/ International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 170-176 

176 
 

Perumal DA and Dass AK (2013). Application of lattice Boltzmann 
method for incompressible viscous flows. Applied 
Mathematical Modelling, 37(6): 4075-4092. 

Prasad C and Dass Ak (2016). Use of an HOC scheme to determine 
the existence of multiple steady states in the antiparallel lid-
driven flow in a two-sided square cavity. Computers and 
Fluids, 140: 297-307. 

Shah A, Guo H, and Yuan L (2009). A third-order upwind compact 
scheme on curvilinear meshes for the incompressible Navier-

Stokes equations. Communications in Computational Physics, 
5(2-4): 712-729. 

Shah A, Yuan L, and Islam S (2012). Numerical solution of 
unsteady Navier–Stokes equations on curvilinear meshes. 
Computers and Mathematics with Applications, 63(11): 1548-
1556. 

Wahba EM (2009). Multiplicity of states for two-sided and four-
sided lid driven cavity flows. Computers and Fluids, 38(2): 
247-253. 

 


	Steady viscous flow inside deep, shallow and skewed cavities by an implicitNavier-Stokes solver
	1. Introduction
	2. Governing equations and numerical discretization
	3. Results and discussions
	3.1. Flow in a deep-cavity
	3.2. Flow in a shallow-cavity
	3.3. Flow in a two sided deep-cavity
	3.4. Flow in a non-facing square cavity
	3.5. Flow in a two sided skewed-cavity

	4. Summary
	References


